July 19, 2010

The Resource Description Framework (RDF)

Diagram for the LOD datasets

The Resource Description Framework (RDF) is a family of World Wide Web Consortium (W3C) specifications originally designed as a metadata data model. It has come to be used as a general method for conceptual description or modeling of information that is implemented in web resources; using a variety of syntax formats.

Overview
Basically speaking, the RDF data model is not different from classic conceptual modeling approaches such as Entity-Relationship or Class diagrams, as it is based upon the idea of making statements about resources, in particular, Web resources, in the form of subject-predicate-object expressions. These expressions are known as triples in RDF terminology. The subject denotes the resource, and the predicate denotes traits or aspects of the resource and expresses a relationship between the subject and the object. For example, one way to represent the notion "The sky has the color blue" in RDF is as the triple: a subject denoting "the sky", a predicate denoting "has the color", and an object denoting "blue". RDF is an abstract model with several serialization formats (i.e., file formats), and so the particular way in which a resource or triple is encoded varies from format to format.

This mechanism for describing resources is a major component in what is proposed by the W3C's Semantic Web activity: an evolutionary stage of the World Wide Web in which automated software can store, exchange, and use machine-readable information distributed throughout the Web, in turn enabling users to deal with the information with greater efficiency and certainty. RDF's simple data model and ability to model disparate, abstract concepts has also led to its increasing use in knowledge management applications unrelated to Semantic Web activity.

A collection of RDF statements intrinsically represents a labeled, directed multi-graph. As such, an RDF-based data model is more naturally suited to certain kinds of knowledge representation than the relational model and other ontological models traditionally used in computing today. However, in practice, RDF data is often persisted in relational database or native representations also called Triplestores, or Quad stores if context (i.e. the named graph) is also persisted for each RDF triple. As RDFS and OWL demonstrate, additional ontology languages can be built upon RDF.
History
There were several ancestors to the W3C's RDF. Technically the closest was MCF, a project initiated by Ramanathan V. Guha while at Apple Computer and continued, with contributions from Tim Bray, during his tenure at Netscape Communications Corporation. Ideas from the Dublin Core community, and from PICS, the Platform for Internet Content Selection (the W3C's early Web content labelling system) were also key in shaping the direction of the RDF project.

The W3C published a specification of RDF's data model and XML syntax as a Recommendation in 1999. Work then began on a new version that was published as a set of related specifications in 2004. While there are a few implementations based on the 1999 Recommendation that have yet to be completely updated, adoption of the improved specifications has been rapid since they were developed in full public view, unlike some earlier technologies of the W3C. Most newcomers to RDF are unaware that the older specifications even exist.

RDF Topics
Serialization formats
Two common serialization formats are in use.
The first is an XML format. This format is often called simply RDF because it was introduced among the other W3C specifications defining RDF. However, it is important to distinguish the XML format from the abstract RDF model itself. Its MIME media type, application/rdf+xml, was registered by RFC 3870. It recommends RDF documents to follow the new 2004 specifications.

In addition to serializing RDF as XML, the W3C introduced Notation 3 (or N3) as a non-XML serialization of RDF models designed to be easier to write by hand, and in some cases easier to follow. Because it is based on a tabular notation, it makes the underlying triples encoded in the documents more easily recognizable compared to the XML serialization. N3 is closely related to the Turtle and N-Triples formats.

Triples may be stored in a triplestore.

Resource identification
The subject of an RDF statement is either a Uniform Resource Identifier (URI) or a blank node, both of which denote resource. Resources indicated by blank nodes are called anonymous resources. They are not directly identifiable from the RDF statement. The predicate is a URI which also indicates a resource, representing a relationship. The object is a URI, blank node or a Unicode string literal.

In Semantic Web applications, and in relatively popular applications of RDF like RSS and FOAF (Friend of a Friend), resources tend to be represented by URIs that intentionally denote, and can be used to access, actual data on the World Wide Web. But RDF, in general, is not limited to the description of Internet-based resources. In fact, the URI that names a resource does not have to be dereferenceable at all. For example, a URI that begins with "http:" and is used as the subject of an RDF statement does not necessarily have to represent a resource that is accessible via HTTP, nor does it need to represent a tangible, network-accessible resource — such a URI could represent absolutely anything. However, there is broad agreement that a bare URI (without a # symbol) which returns a 300-level coded response when use in an http GET request should be treated as denoting the internet resource that it succeeds in accessing.

Therefore, it is necessary for producers and consumers of RDF statements to be in agreement on the semantics of resource identifiers. Such agreement is not inherent to RDF itself, although there are some controlled vocabularies in common use, such as Dublin Core Metadata, which is partially mapped to a URI space for use in RDF. The intent of publishing RDF-based ontologies on the Web is often to establish, or circumscribe, the intended meanings of the resource identifiers used to express data in RDF. For example, the URI http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#merlot is intended by its owners to refer to the class of all Merlot red wines, an intent which is expressed by the OWL ontology — itself an RDF document — in which it occurs. Note that this is not a 'bare' resource identifier, but is rather a URI reference, containing the '#' character and ending with a fragment identifier.

Statement reification and context
The body of knowledge modeled by a collection of statements may be subjected to reification, in which each statement (that is each triple subject-predicate-object altogether) is assigned a URI and treated as a resource about which additional statements can be made, as in "Jane says that John is the author of document X". Reification is sometimes important in order to deduce a level of confidence or degree of usefulness for each statement.

In a reified RDF database, each original statement, being a resource, itself, most likely has at least three additional statements made about it: one to assert that its subject is some resource, one to assert that its predicate is some resource, and one to assert that its object is some resource or literal. More statements about the original statement may also exist, depending on the application's needs.

Borrowing from concepts available in logic (and as illustrated in graphical notations such as conceptual graphs and topic maps), some RDF model implementations acknowledge that it is sometimes useful to group statements according to different criteria, called situations, contexts, or scopes, as discussed in articles by RDF specification co-editor Graham Klyne. For example, a statement can be associated with a context, named by a URI, in order to assert an "is true in" relationship. As another example, it is sometimes convenient to group statements by their source, which can be identified by a URI, such as the URI of a particular RDF/XML document. Then, when updates are made to the source, corresponding statements can be changed in the model, as well.

Implementation of scopes does not necessarily require fully reified statements. Some implementations allow a single scope identifier to be associated with a statement that has not been assigned a URI, itself. Likewise named graphs in which a set of triples is named by a URI can represent context without the need to reify the triples.

RDF has been criticised in 2001 on the following grounds:

  • The XML syntax for RDF is too verbose.
  • XML-RDF is one particular representation of RDF. One example of a more grammatically concise equivalent representation is Notation 3.
  • The triple (subject, predicate, object) notation simplicity introduces reading and computation disadvantages.
  • The "triple" is a virtually universal linguistic construct, and has been handled by artificial langues such as PROLOG for many decades.
  • RDF's ability to reify statements allows for ambiguities.
  • RDF's ability to add an infinite amount of triples allows an author to negate ambiguity - this really is a matter of the authorship of the knowledge-representation, and not the format of the representation.

Enhanced by Zemanta

About the Author

Iwebslog Labs

Author & Editor

Has laoreet percipitur ad. Vide interesset in mei, no his legimus verterem. Et nostrum imperdiet appellantur usu, mnesarchum referrentur id vim.

Post a Comment

 
Iwebslog Blog © 2015 - Designed by Templateism.com